

Importance of RAC sector focusing on ozone depletion and climate change

GIZ Proklima

Bangkok, 31st July 2012

Agenda

Rational for NAMAs in the Refrigeration, Air Conditioning & Foam Blowing sector

NAMA Example: Refrigeration and Air Conditioning (RAC)

Towards a NAMA in the RAC&FB sector in Thailand

Agenda

Rational for NAMAs in the Refrigeration, Air Conditioning & Foam Blowing sector

NAMA Example: Refrigeration and Air Conditioning (RAC)

Towards a NAMA in the RAC&FB sector in Thailand

Background – Climate Impact Refrigeration and Air Conditioning

HFC

CO₂

eq.

Background – From CFC, HCFC to HFC

CFC-11-1

HFCs have no effect on the ozone layer, but are potent greenhouse gases.

There are climate-friendly alternatives!

Refrigerant	Group	Atmospheric life	ODP	GWP			
R11	CFC	130	1	4000			
R12	CFC	130	1	8500			
R22	HCFC	15	.05	1500		1	
R134a	HFC	16	0	1300	-	-1	High GWP "Drop-Ins"
R404a	HFC	16	0	3260		ı	Diop-iiis
R410a	HFC	16	0	1720			
R507	HFC	130	1	3300			
R717	NH3	-	0	0		4	
R744	CO ₂	-	0	1			Low GWP
R290	НС	< 1	0	8			Natural Refrigerants
R600a	НС	< 1	0	8			Romgoranto

GWP-weighted emission reductions through the Montreal Protocol

Estimated HFC emissions till 2050

Fig A: Predicted Growth of HFCs without constraint

Fig B: HFC share of global GHG-emissions (compare HFC high vs. 450 ppm stabilization szenario -> blue dotted line) Source: Velders, Guus J.M. et.al., 2009

Worldwide HFC-emissions projection till 2050

CFC-, HCFC- and HFC-consumption in developing countries: Business as Usual

Total emission reduction potential including banks

Source: UN Dept. of Public Information, 2009

Global demand (mainly for AC) will drive demand for refrigerants (unabated)

AC demand

- more people
- moving in cities
- warm and humid climates
- warmer world
- more wealth
- more ACs,.....

Similar drivers for

- commercial refrigeration
- industrial refrigeration
- mobile AC and refrig.

There are alternatives for (nearly) all applications!

... and often they make better economics!

World 2020 Scenario

Strong reduction possible ... to a large extent without additional costs to the society

... addressing alternative solutions in key countries and subsectors ..

- Domestic Refrigeration Swaziland (HC)
- Commercial Refrigeration SA (NH3, CO2)
- Mobile AC South Africa
 trans. Refrigeration (CO2)
- Room AC China/ India (HC R290)
- Central Chiller Mauritius (NH3)

HPMP XPS Foam Sector Plan China (HC, CO2)

Agenda

Rational for NAMAs in the Refrigeration, Air Conditioning & Foam Blowing sector

NAMA Example: Refrigeration and Air Conditioning (RAC)

Towards a NAMA in the RAC&FB sector in Thailand

Abatement options – supermarkets

Centralised pack concept, HCFC-22

High leakage rate, large refrigerant charge

Sample NAMA mitigation scenario

- BAU with direct and indirect emissions
- 1% growth of stores p.a.
- 5% of stores are converted annually (app. 55 p.a.)
- 20% efficiency improvement compared to conv.
- 100% direct emissions avoided

Agenda

Rational for NAMAs in the Refrigeration, Air Conditioning & Foam Blowing sector

NAMA Example: Refrigeration and Air Conditioning (RAC)

Towards a NAMA in the RAC&FB sector in Thailand

RAC Emission pathways for Thailand (preliminary results!)

Total emissions and Reduction potential

RAC Emission pathways for Thailand (preliminary results!)

Working Plan: RAC&FB NAMA in Thailand

Part I: Inventory/	Step 1	Stakeholder (Industry) Engagement
Stakeholder Engagement	Step 2	Establishment of Inventory
Part II: Preparing NAMA Description	Step 3	Defining Sector BAU and Mitigation Scenarios
	Step 4	Identification of Subsectors for Mitigation Action
Document (NAMA-DD)	Step 5	Alternative Technologies + Barrier Removal
	Step 6	Policy and Financing
	Step 7	Roadmap
	Step 8	Upload NAMA – DD for Registration
Part III:		Enabling implementation of measures
Implementation	Step 10	NAMA support framework
	Step 11	NAMA Progress and verification of emission reductions

RAC categories

Sector	Subsector
Unitary air conditioning	Self-contained air conditioners
	Split residential air conditioners
	Split commercial air conditioners
	Duct split residential air conditioners
	Commercial ducted splits
	Rooftop ducted
	Multi-splits
Chillers	Air conditioning chillers
	Process chillers
Mobile AC	Car air conditioning
	Large vehicle air conditioning
Domestic refrigeration	Domestic refrigeration
Commercial Refrigeration	Stand-alone equipment
	Condensing units
	Centralised systems for supermarkets
Industrial Refrigeration	Stand-alone equipment
	Condensing units
	Centralised systems
Transport Refrigeration	Refrigerated trucks/trailers

(UNEP RTOC, 2010, modified)

Foam categories

Cell type	Sub-application
Open cell type	PU Flexible Foam Continuous
	PU Flexible Foam Discontinuous
	PU Flexible Moulded Foam
	PU Integral Skin Foam
Closed cell type	PU Continuous Panel
	PU Continuous Flexible panel
	PU Discontinuous Panel
	PU Appliance Foam
	PU Continuous Block
	PU Discontinuous Block
	PU Spray Foam
	PU Pipe-in-Pipe
	PU OCF (bottle foam)
	PU Rigid foam all other applications
	XPS Extruded Polystyrene boards

Inventory: Appliance numbers (equipment) in Thailand Bank, Demand and Emissions

Following the Tier 2a emission-factor approach (IPCC, 2006)

Feed vintage bottom-up model with inventory data from Thailand

Technical parameters needed

Business as usual (BAU) simulations for Thailand (preliminary results!)

Total Emissions (Direct + Indirect)

BAU Direct and Indirect Emissions: Commercial Refrigeration

Stand alone units (e.g. bottle cooler and ice cream freezers)

Centralized systems (large supermarket)

BAU and Mitigation Scenarios – Centralized Systems

Demand BAU 90 80 70 60 90 HFC HCFC HCFC CFC

BAU and Mitigation Scenarios – Centralized Systems

BAU and Mitigation Scenarios – Process Chillers

Reduce 50% of (direct) emissions at negative costs

MACC 2030 - Direct emissions

RAC Emission pathways for Thailand (preliminary results!)

Total emissions and Reduction potential

Thank you for your kind attention!